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Abstract 

Background:  The accuracy of CT and tumour markers in screening lung cancer needs to be improved. Computer-
aided diagnosis has been reported to effectively improve the diagnostic accuracy of imaging data, and recent studies 
have shown that circulating genetically abnormal cell (CAC) has the potential to become a novel marker of lung 
cancer. The purpose of this research is explore new ways of lung cancer screening.

Methods:  From May 2020 to April 2021, patients with pulmonary nodules who had received CAC examination within 
one week before surgery or biopsy at First Affiliated Hospital of Zhengzhou University were enrolled. CAC counts, CT 
scan images, serum tumour marker (CEA, CYFRA21–1, NSE) levels and demographic characteristics of the patients 
were collected for analysis. CT were uploaded to the Pulmonary Nodules Artificial Intelligence Diagnostic System 
(PNAIDS) to assess the malignancy probability of nodules. We compared diagnosis based on PNAIDS, CAC, Mayo Clinic 
Model, tumour markers alone and their combination. The combination models were built through logistic regression, 
and was compared through the area under (AUC) the ROC curve.

Results:  A total of 93 of 111 patients were included. The AUC of PNAIDS was 0.696, which increased to 0.847 when 
combined with CAC. The sensitivity (SE), specificity (SP), and positive (PPV) and negative (NPV) predictive values of the 
combined model were 61.0%, 94.1%, 94.7% and 58.2%, respectively. In addition, we evaluated the diagnostic value of 
CAC, which showed an AUC of 0.779, an SE of 76.3%, an SP of 64.7%, a PPV of 78.9%, and an NPV of 61.1%, higher than 
those of any single serum tumour marker and Mayo Clinic Model. The combination of PNAIDS and CAC exhibited 
significantly higher AUC values than the PNAIDS (P = 0.009) or the CAC (P = 0.047) indicator alone. However, including 
additional tumour markers did not significantly alter the performance of CAC and PNAIDS.

Conclusions:  CAC had a higher diagnostic value than traditional tumour markers in early-stage lung cancer and a 
supportive value for PNAIDS in the diagnosis of cancer based on lung nodules. The results of this study offer a new 
mode of screening for early-stage lung cancer using lung nodules.
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Background
Lung cancer is the main contributor to cancer mortality 
globally [1, 2]. The main screening method for the early 
diagnosis of lung cancer is low-dose spiral CT (LDCT) 
when lung nodules are small in size, for which aspiration 
biopsy is not suitable. However, according to the report 
of the National Lung Screening Test (NLST), only 3.6% 
of lung nodules screened by LDCT are diagnosed as lung 
cancer [3], and this situation often causes overdiagnosis 
or a significant delay in the early diagnosis of lung can-
cer, and patients may lose the opportunity to receive 
timely treatment [4]. Moreover, due to differences in the 
experience and understanding of imaging readers, there 
remains a need for a method to assist in the analysis of 
CT results.

To date, there have been considerable efforts to 
improve the efficiency of diagnosis of lung cancer based 
on imaging, which includes computer-aided diagno-
sis (CAD) systems. Indeed, CAD systems can help in 
detecting lung nodules in LDCT and in determining the 
nature of nodules by extracting and analysing the imag-
ing characteristics of nodules, including their size, shape, 
and density, among others [5]. A matched case–control 
study using NLST data found that the CAD image analy-
sis method significantly improves diagnostic accuracy for 
lung nodules detected at low-dose CT [6]. Nevertheless, 
the imaging features of early-stage lung cancer are usu-
ally atypical, and it is still a challenge to use CAD alone 
to separate small malignant nodules from the majority of 
benign nodules. Furthermore, CAD lacks rigorous evi-
dence to make explainable medical decisions because of 
the black-box-based inference process of deep learning 
[7]. Therefore, CAD cannot be applied for medical diag-
nosis and decision-making alone, yet the combination of 
multiple clinical indicators may help to improve diagnos-
tic accuracy [7–9].

Besides a more reliable method to analyse and interpret 
CT results, biomarker tests from blood sample are also 
with great potential in lung cancer diagnosis. In addi-
tion to traditional tumour markers, noninvasive liquid 
biopsies, such as circulating free nucleic acids (RNA and 
DNA) and circulating tumour cells (CTCs), have been 
reported in recent years.

However, liquid biopsy has not yet been adopted in 
routine clinical practice owing to many limiting fac-
tors [10], and traditional tumour markers are limited 
because of their low sensitivity and false positives caused 
by infection or other factors [11]. Moreover, circulating 

tumour cells (CTCs) of lung cancer often display none-
pithelial characteristics, and CTCs are difficult to detect 
through epithelial cell adhesion molecule (EpCAM)-
dependent methods [12]. The recently proposed bio-
marker of circulating genetically abnormal cells (CACs) 
may solve this dilemma.

CACs are defined as peripheral blood mononuclear 
cells carrying mutations on chromosome 3 (3p22.1, 3q29) 
and chromosome 10 (10q22.3, CEP10); the detection 
of  these cells are not EpCAM dependent and therefore 
overcome the limitation of CTCs detection [13]. Abnor-
malities at the above loci have been shown through com-
parative genomic hybridization analysis to commonly 
occur in lung cancer [14]. Katz et  al. then confirmed 
genomic abnormalities in the sputum, tissue and blood 
of patients with non-small-cell lung cancer (NSCLC) 
[15–17]. Katz et al. also proved that CACs have auxiliary 
diagnostic value in different stages of lung cancer, with 
the latest research showing a sensitivity and specificity of 
88.8% and 100%, respectively, for lung cancer diagnosis 
[17]. Therefore, CACs have great potential for diagnosing 
pulmonary nodules [18].

In this work, we retrospectively analysed data for 
patients with pulmonary nodules and attempted to 
identify a novel biomarker to support the ability of CT 
to differentiate malignant from benign pulmonary nod-
ules. The objective of this study was to explore new ways 
of diagnosing pulmonary nodules by establishing new 
diagnostic models based on artificial intelligence-based 
CAD and comparing the diagnostic efficiency of differ-
ent models.

Methods
Study design and patients
This was a retrospective study of patients with pulmo-
nary nodules detected by CT at First Affiliated Hospi-
tal of Zhengzhou University; Totally, 111 patients were 
included from May 2020 to April 2021.

The inclusion criteria for the study were as follows: 
(1) ≥ 18 years of age; (2) pulmonary nodule diameter no 
more than 30 mm (measured by CT scan), including sin-
gle and multiple pulmonary nodules; (3) diagnosis histo-
logically confirmed using nonsurgical biopsy (including 
fibre bronchoscope biopsy, computed tomography or 
ultrasonic-guided percutaneous transthoracic biopsy) or 
surgical resection; and (4) CAC tests performed within 
1 week prior to surgery or biopsy. The exclusion criteria 
were as follows: (1) CT slice thickness greater than 2 mm; 
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(2) a history of malignant tumours; (3) malignant nodules 
that were not classified as stage I based on the 8th edi-
tion of the American Joint Committee on Cancer (AJCC) 
staging system [19]; and (4) malignant nodules that were 
not primary malignant tumours of the lung. Ultimately, 
93 patients were enrolled and divided into benign and 
malignancy groups based on histopathologic results 
(Fig. 1). Tumour pathology was classified according to the 
World Health Organization (WHO) classification stand-
ard of lung tumours (2015 edition) [20].

Data collection
Clinical data for the patients were collected, includ-
ing sex, age, smoking history and family history of 
malignant tumours. The results of preoperative serum 
tumour marker levels, including carcinoembryonic anti-
gen (CEA), cytokeratin fragment 21–1 (CYFRA21–1) 
and neuron-specific enolase (NSE), for 66 patients were 
collected. The chest CT imaging data for the enrolled 
patients were separately exported, and the imaging fea-
tures of nodules (including the diameter, type, loca-
tion, counts, number and spiculation of nodules) were 
independently assessed by two senior physicians. When 
opinions differed, a consistent conclusion was reached 
through discussion with the third senior physician.

Pulmonary Nodules Artificial Intelligence Diagnostic 
System (PNAIDS) based CAD
PNAIDS is an artificial intelligence-based CAD that 
applies machine learning technology and a deep con-
volutional neural network to realize 3D reconstruction 
and segmentation of nodules and predict the malignant 

probability of pulmonary nodules [21]. All chest CT 
scans were obtained during deep inspiration; the CT 
images were of no more than 5  mm of layer thick-
ness and reconstructed with a slice thickness less than 
2 mm. Imaging of the lung window was downloaded in 
DICOM format and uploaded to a cloud platform in the 
same format. The malignancy probability of each nod-
ule was calculated. The highest malignancy probability 
value of all nodules was used for analysing patients with 
multiple nodules.

CAC detection
Ten millilitres of peripheral venous blood was collected 
within one week before surgery or biopsy, blood sam-
ples were collected into an anticoagulation tube con-
taining EDTA and fixed with cell preservation solution 
(including solution A containing phosphatase inhibitor 
and protease inhibitor and solution B containing formal-
dehyde) within 2  h. Peripheral blood mononuclear cells 
(PBMCs) were isolated by Ficoll-Hypaque density gradi-
ent centrifugation within 96  h. PBMCs were diluted to 
40,000/100  μl, and a smear was prepared. Four-colour 
(3p22.1, 3q29 and 10q22.3, CEP10) fluorescence in  situ 
hybridization was performed using a mononuclear cell 
chromosome abnormality detection kit (Zhuhai SanMed 
Biotech Inc.). The scanning, imaging and analysis pro-
cedures were automatically completed by a pathological 
section scanner (The Duet System, Allegro Plus, Bioview 
Ltd.). A total of 10,000 cells were randomly selected for 
a 15-layer cell scan, and the number of CACs was calcu-
lated. CACs were defined as cells exhibiting abnormal 
amplification at specific sites and at least three fluores-
cent signals at two or more specific probe sites (as pre-
sented in Fig. 2).

Mayo Clinic model
The widely accepted Mayo Clinic model [22] was 
also performed to predict the malignant prob-
ability of nodules. The model expresses the malig-
nancy probability as a function of six predictors: 
(1) probability of malignancy = ex / (1 + ex); (2) 
x  =  -6 .8272 +  (0 .0391 ×  age)  +  (0 .7917 ×  smok-
ing) + (1.3388 × cancer) + (0.1274 × nodule diame-
ter) + (1.0407 × spiculation) + (0.7838 × upper lobe); (3) e 
is the natural logarithm; age is the patient’s age (years), 
if the patient is a current or former smoker, smoking = 1 
(otherwise = 0); if the patient has a history of extra-
thoracic malignancy more than 5 years, cancer = 1 (oth-
erwise = 0); the nodule diameter is the diameter of the 
nodule (mm); if there are burrs at the edge of the nodule, 

Fig. 1  Flowchart of patients enrolled
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spiculation = 1 (otherwise = 0); if the nodules are located 
in the superior lobe, upper lobe = 1 (otherwise = 0).

Statistical analysis
Statistical analyses were performed using SPSS 21.0. 
Quantitative variables are expressed as the mean ± stand-
ard deviation (X ± S) or median and quartiles [M(QL, 
QU)], and independent sample t-tests or Mann–Whitney 
U tests were applied. Categorical variables are expressed 
as n (%) and analysed using the Chi-square test or Fish-
er’s exact test. A receiver operating characteristic curve 
(ROC) and area under the curve (AUC), sensitivity (SE), 
specificity (SP), positive predictive value (PPV), negative 
predictive value (NPV) and Youden index was used to 
determine the cut-off value. To validate the robustness of 
the diagnostic model, logistic regression and Fisher dis-
criminate analysis were both performed. The Chi-square 
test was applied for correlation analysis of classification 
variables. Two- sided P < 0.05 was considered significant. 
Correlation between numerical variables was analysed 
by calculating the Spearman rank correlation coefficient, 
with two-sided P < 0.01 considered significant. Boxplots, 
forest plots, and heatmaps were drawn in R (v4.0.10). 
DeLong’s test was applied to compare AUC between 
ROC curves (R package pROC).

Results
Patient characteristics
A total of 111 patients were initially screened in this 
study, among which 18 were excluded for different 

reasons (7 cases were not stage I, 3 were not primary 
lung cancer, 4 involved a malignancy history, 4 were 
without slice CT data) (Fig.  1). Ninety-three patients 
were ultimately included in the analysis, of which 
59 (63.4%) were diagnosed with lung cancer and 34 
(36.6%) with benign nodules. There were 39 males 
(41.9%) and 54 females (58.1%), with a mean age of 
53.11 ± 10.74 years.

There were statistically significant differences in 
sex (P = 0.003), smoking history (P = 0.035), and type 
of nodules (P = 0.001), whereas no differences in age, 
family history of cancer, diameter of nodules, multiple 
nodules, upper lobe nodules, or burr signs were found 
between the benign group and the malignancy group. 
As none of the females had a history of smoking, a 
subgroup analysis of smoking history was performed, 
stratified by sex. Stratified analysis showed a nonsig-
nificant difference in smoking history between the 
benign and malignancy groups in the male subgroup, 
with Chi-square test statistic of 0.300 (P = 0.584). The 
basic characteristics of the two groups are shown in 
Table 1.

PNAIDS and CAC counts in patients
There was no significant differences between the 
benign group and the malignancy group at the time 
before surgery or biopsy (3(1,5) days for benign group 
and 4(2,5) days for malignancy group; P = 0.393). 
The median CAC counts was 1.5(0, 3) in the benign 
group and 4 (3, 6) in the malignancy group; the 

Fig. 2  Interpretation of CAC test results a) the green and red probe which located in chromosome 3 have two signals (see green and red arrows 
in Fig. 2a), the blue and yellow probes located in chromosome 10 have two signals (see blue and yellow arrows in Fig. 2a), indicating normal cells. 
b) both the green and red probe which located in chromosome 3 have three signals (see green and red arrows in Fig. 2b), the blue and yellow 
probes located in chromosome 10 have two signals (see blue and yellow arrows in Fig. 2b), indicating that the cell has abnormal amplification on 
chromosome 3, which is CAC​
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Table 1  Demographic characteristics of patients

a  The statistic of the Chi-square test
b  The statistic of the t-test
c  The statistic of Fisher’s exact test
d  Including 2 organizing pneumonia, 3 fibrous tissue hyperplasia
e  Including 1 squamous cell carcinoma, 1 small cell lung cancer

Variables Benign group (n = 34) Malignancy group (n = 59) x2 a P

Gender, n (%) 8.654 0.003

  Male 21 (61.8%) 18 (30.5%)

  Female 13 (38.2%) 41 (69.5%)

Age, year 51.27 ± 10.53 54.17 ± 10.81 1.260b 0.211

Smoking history, n (%)
  All patients 4.446 0.035

    Yes 10 (29.4%) 7 (11.9%)

    No 24 (70.6%) 52 (88.1%)

  Male 0.300 0.584

    Yes 10 (47.6%) 7 (38.9%)

    No 11 (52.4%) 11 (61.1%)

  Female - -

    Yes 0 0

    No 13 (100%) 41 (100%)

Family history of cancer, n (%) 0.431 0.512

  Yes 7 (20.6%) 9 (15.3%)

  No 27 (79.4%) 50 (84.7%)

Nodule diameter (d), n (%) 1.830c 0.419

  5 mm < d ≤ 10 mm 17 (50.0%) 29 (49.2%)

  10 mm < d ≤ 20 mm 12 (35.3%) 26 (44.1%)

  20 mm < d ≤ 30 mm 5 (14.7%) 4 (6.8%)

Type of nodule, n (%) 15.267 0.001

  Solid nodule 22 (64.7%) 14 (23.7%)

  Mixed ground-glass nodule 5 (14.7%) 19 (32.2%)

  Pure ground-glass nodule 7 (20.6%) 26 (44.1%)

Solitary nodule, n (%) 0.593 0.441

  Yes 10 (29.4%) 22 (37.3%)

  No 24 (70.6%) 37 (62.7%)

Location of nodule, n (%) 0.037 0.848

  Upper lobe 22 (64.7%) 37 (62.7%)

  Non-upper lobe 12 (35.3%) 22 (37.3%)

Spiculation, n (%) 0.555 0.456

  Yes 25 (77.8%) 39 (55.2%)

  No 9 (22.2%) 20 (44.8%)

Histology, n (%) - -

  Benign tumour 2 (5.9%) -

  Granuloma 9 (26.5%) -

  Chronic inflammation 18 (52.9%) -

  Otherd 5 (14.7%) -

  Adenocarcinoma - 57 (96.6%)

  Othere - 2 (3.4%)
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median PNAIDS was 67.5% (59.5%, 78.8%) and 82.0% 
(70.0%, 90.0%), respectively. The distribution of CAC 
(U = 1562.5) and PNAIDS (U = 1396.5) between 
the benign and malignancy groups was statistically 
significant, at P < 0.001 and P = 0.002, respectively 
(Fig. 3).

Diagnostic efficiency of different methods
Based on PNAIDS, CAC counts, Mayo Clinic 
model, and tumour marker levels in the benign 
and malignancy groups, the ROCs were drawn 
(Fig.  4). The AUC, 95% confidence interval (CI), 
and Youden index of all these indicators are pre-
sented in Fig. 5. SE, SP, PPV and NPV are shown in 
Table 2. PNAIDS exhibited an AUC of 0.696, with a 
95% CI of 0.587–0.806 (P = 0.002); the AUC of CAC 
counts was 0.779, and the 95% CI was 0.683–0.875 
(P < 0.001).

ROC curves demonstrated that 69.5% was the best 
cut-off value for PNAIDS, with the highest Youden 
index (0.351); the SE was 76.3% (45/59), the SP was 
58.8% (20/34), the PPV was 76.3% (45/59), and the 
NPV was 58.8% (20/34). According to the ROC of 
CAC counts, the Youden index was highest when 
2.5 CACs per 10,000 PBMCs was used as the cut-off. 
Cell count results was integer, so CAC counts ≥ 3 
was chosen to discriminate benign and malignant 
nodules, with an SE of 76.3% (45/59), SP of 64.7% 
(22/34), PPV of 78.9% (45/57), and NPV of 61.1% 
(22/36).

Correlation between indicators
Correlation analysis among CAC counts, PNAIDS, 
age, CEA, CYFRA21–1, NSE and nodule diameter 
showed a weak correlation between CAC counts and 
age (r = 0.311, P = 0.002), NSE and diameter of lung 
nodules (r = 0.323, P = 0.008). PNAIDS did not exhib-
ited significant correlation with any of these indicators 
(Fig.  6). Notably, no significant correlation between 
PNAIDS and CAC was observed.

Numerical variables (PNAIDS and CAC counts) were 
converted to categorical variables according to cut-
off values. Because PNAIDS was accurate to 2 decimal 
places, it was classified by whether it was less than 70.0%. 
In correlation analysis of PNAIDS, CAC counts and 
other categorical variables, PNAIDS correlated signifi-
cantly with the type of nodule (P = 0.035), but no statis-
tical significance with other indicators was detected. In 
addition, there was a nonsignificant correlation between 
CAC counts and all these categorical variables (Table 3).

Combination of different indicators for diagnosing lung 
nodules
As tumour markers tend to be used in combination 
in the clinic, a logistic regression model named TM 
was established using CEA, CYFRA21–1 and NSE, 
and its ROC curve used to diagnose lung nodules 
(Fig.  7). First, Model 1 was established by combining 
TM and PNAIDS. Second, PNAIDS and CAC counts 
were combined to build Model 2. To better apply CAC 

Fig. 3  Distribution of a) PNAIDS and b) CAC counts in benign and malignancy group
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Fig. 4  ROC of PNAIDS, CAC counts, Mayo model, CEA, CYFRA21–1 and NSE
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counts to the model, we transformed this marker into 
ln (CAC counts + 1), which was then applied to the 
logistic regression model. Similarly, the transformed 
data were used to build Model 3, which combined 
PNAIDS, CAC counts and TM. The ROCs of the three 
models are shown in Fig. 7; Fig. 5 and Table 2 provide 
the AUCs with 95% CI, SE, SP, PPV, NPV and Youden 
index values. Among all models, Model 2, based on the 

combination of PNAIDS and CAC counts, showed the 
highest diagnostic efficiency, at 0.847 (95% CI 0.769–
0.924), with a significant improvement in AUC values 
compared with PNAIDS (P = 0.009) alone or CAC 
counts (P = 0.047) alone. Notably, Model 3 did not 
significantly improve the diagnostic efficiency com-
pared with Model 2. Similar results were obtained in 
Fisher discriminant analysis (see Additional file 1). The 

Fig. 5  Forest plot of AUC: TM, the combination of CEA, CYFRA21–1 and NSE; Model 1, PNAIDS combined TM; Model 2, PNAIDS combined CAC; 
Model 3, PNAIDS combined CAC and TM

Table 2  Comparison in different diagnostic methods

N Number of samples, SE Sensitivity, SP Specificity, PPV Positive predictive value, NPV Negative predictive value; TM, the combination of CEA, CYFRA21–1 and NSE; 
Model 1, PNAIDS combined TM; Model 2, PNAIDS combined CAC; Model 3, PNAIDS combined CAC and TM

Models AUC​ 95%CI N Youden index SE SP PPV NPV

PNAIDS 0.696 0.587-0.806 93 0.351 76.3% 58.8% 76.3% 58.8%

CAC counts 0.779 0.683-0.875 93 0.410 76.3% 64.7% 78.9% 61.1%

Mayo model 0.468 0.342-0.593 93 0.083 84.7% 23.5% 65.8% 47.1%

CEA 0.543 0.398-0.688 66 0.244 47.5% 76.9% 76.0% 48.8%

CYFRA21–1 0.519 0.375-0.663 66 0.181 45.0% 73.1% 72.0% 46.3%

NSE 0.494 0.352-0.636 66 0.125 12.5% 100.0% 100.0% 42.6%

TM 0.524 0.376-0.673 66 0.131 90.0% 23.1% 64.3% 60.0%

Model 1 0.654 0.522-0.785 66 0.337 37.5% 96.2% 93.8% 50.0%

Model 2 0.847 0.769-0.924 93 0.551 61.0% 94.1% 94.7% 58.2%

Model 3 0.841 0.744-0.939 66 0.548 62.5% 92.3% 92.6% 61.5%
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Fig. 6  Correlation heatmap between PNAIDS, CAC counts, age, CEA, CYFRA21–1, NSE and nodule diameter (**P < 0.01)

Table 3  Correlation between CAC counts and PNAIDS with other Categorical variables

a  The statistic of the Chi-square test

Variables CAC 
counts < 3 
(n = 36)

CAC 
counts ≥ 3 
(n = 57) 

x2 a P PNAIDS < 70% 
(n = 34)

PNAIDS ≥ 70% 
(n = 59)

x2 a P

Gender, n (%) 0.152 0.697 1.431 0.232

  Male 16 (44.4%) 23 (40.4%) 17 (50.0%) 22 (37.3%)

  Female 20 (55.6%) 34 (59.6%) 17 (50.0%) 37 (62.7%)

Family history of cancer, n (%) 0.207 0.649 0.431 0.512

  Yes 7 (19.4%) 9 (15.8%) 7 (20.6%) 9 (15.3%)

  No 29 (80.6%) 48 (84.2%) 27 (79.4%) 50 (84.7%)

Type of nodule, n (%) 0.224 0.894 6.692 0.035

  Solid nodule 15 (41.7%) 21 (36.8%) 19 (55.9%) 17 (28.8%)

  pure GGN 12 (33.3%) 21 (36.8%) 9 (26.5%) 24 (40.7%)

  mixed GGN 9 (25.0%) 15 (26.3%) 6 (17.6%) 18 (30.5%)

Solitary nodule, n (%) 0.075 0.784 0.348 0.555

  Yes 13 (36.1%) 19 (33.3%) 13 (38.2%) 19 (32.2%)

  No 23 (63.9%) 38 (66.7%) 21 (61.8%) 40 (67.8%)

Spiculation, n (%) 0.317 0.573 2.494 0.114

  Yes 26 (72.2%) 38 (66.7%) 20 (58.8%) 44 (74.6%)

  No 10 (27.8%) 19 (33.3%) 14 (41.2%) 15 (25.4%)

Location of nodule, n (%) 1.953 0.162 2.547 0.110

  Upper lobe 26 (72.2%) 33 (57.9%) 18 (52.9%) 41 (69.5%)

  Non-upper lobe 10 (27.8%) 24 (42.1%) 16 (47.1%) 18 (30.5%)
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formulas of logistic regression models are presented in 
Additional file 2.

The best cut-off point was obtained according to the 
maximum Youden index in the ROC curve of Model 
2 to divide patients into predicted benign and pre-
dicted malignancy groups. The distribution of CACs 
(U = 1936.0) and PNAIDS (U = 1550.5) between 

these groups was significantly different, with both at 
P < 0.001(Fig. 8).

Discussion
In this study, the value of CT in discriminating lung 
cancer from small lung nodules was questioned, even 
with applying a current advanced artificial intelligence 
screening method which significantly increased the 

Fig. 7  ROC of TM, Model 1, Model 2 and Model 3: TM, the combination of CEA, CYFRA21–1 and NSE; Model 1, PNAIDS combined TM; Model 2, 
PNAIDS combined CAC; Model 3, PNAIDS combined CAC and TM
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efficiency of diagnosis compared to the literature value 
of accuracy using CT [23]. Therefore, the traditional 
mode of small lung nodule diagnosis should be investi-
gated. Previous works as well as this work suggest that 
CACs are an ideal candidate marker, as such a test only 
requires the simple process of blood collection and its 
accuracy has been reported in early lung cancer patients 
[18, 24, 25].

Despite the unsatisfactory result of the efficiency of CT 
alone, this approach still performed better than the Mayo 
Clinic model and tumour markers. As a common clini-
cal imaging examination, CT has unquestionable value in 
the diagnosis of a variety of lung diseases [26]. A multi-
centre study involving 534 patients showed that PNAIDS 
had a higher diagnostic accuracy than the Mayo Clinic 
model and radiologists [21], consistent with our results. 
Several classic clinical indicators and imaging features 
are included in the Mayo Clinic model but show poor 
efficiency in distinguishing early lung cancer from benign 
pulmonary nodules. Thus, more specific imaging data 
may have higher diagnostic value than traditional imag-
ing features.

Moreover, the diagnostic value of CACs in comparison 
with other traditional biomarkers has been confirmed 
using a cohort of patients with lung nodules, which is an 
independent validation to the work conducted by Ye et al. 
[24]. In the present study, the highest diagnostic effi-
ciency was achieved when a CAC counts of 3 was chosen 
as the cut-off value, this result is similar to the study con-
ducted by Qiu [25] and Ye [18] et al. Overall, CAC counts 

presented better diagnostic value than commonly used 
tumour markers (CEA, CYFRA21–1, and NSE), which 
agrees with the results of several studies reporting the 
advantages of CACs for the diagnosis of lung cancer [17, 
18, 24, 25, 27], CACs have the potential to become a bet-
ter novel diagnostic marker of lung cancer.

Biomarkers and imaging are often used in combina-
tion to improve diagnostic accuracy [8, 28], our results 
also showed that the efficiency has been greatly improved 
when CAC is combined with PNAIDS in the diagnosis of 
lung nodules. Correlation analysis further suggested that 
PNAIDS and CACs are independent of each other, which 
is consistent with the premise of the model that variables 
are independent. Interestingly, Model 2, which com-
bined CAC counts and PNAIDS, displayed significantly 
higher diagnostic efficiency than CAC counts or PNAIDS 
alone. CAC counts and PNAIDS reflect the biogenetics 
and imaging features of patients, respectively. The 95% 
confidence intervals of the AUC of NSE, CYFRA21–1, 
CEA and the combined index TM all contained 0.5. 
However, Models 1 and 3, which further included TM, 
did not show improved diagnostic efficiency compared 
with PNAIDS or with PNAIDS combined with CAC. This 
result also suggests the limitation of the currently clini-
cally used TM, that is, lack of sensitivity and specificity.

In addition, we analysed correlation between the 
indicators and demographic characteristics, which 
indicated a weak correlation between CAC counts and 
age. In the study by Liu [27], there was no relationship 
between a positive CAC result (CAC counts ≥ 1) and 

Fig. 8  Distribution of a) PNAIDS and b) CAC counts in predicted benign and malignancy group(Model 2)
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age (age ≥ 60), which is contrary to our finding. Liu 
et  al. treated age and CAC counts as dichotomic vari-
ables, which may have led to poorer testing efficiency, 
whereas we directly analysed the correlation between 
age and CAC counts. The observed correlation may be 
due to genetic mutations that accumulate in cells with 
age, which also suggests that the age of the population 
may be a factor that needs to be controlled for or cor-
rected in CAC detection. It should be noted that age is 
also a risk factor for NSCLC, further research is needed 
to explore whether there is a biological significance 
between CAC and age. The serum level of NSE had a 
significant correlation with nodular diameter, which can 
be explained by tumour burden [29, 30]. PNAIDS only 
showed a correlation with the type of nodule, suggest-
ing the independence of imaging features and the value 
of imaging data for early screening of lung cancer.

Nevertheless, there are limitations in this study. First, 
as most malignant nodules screened by CT were ade-
nocarcinoma, stratified analysis of different pathologi-
cal types could not be applied to further explore the 
potential bias resulting from other pathological types of 
lung cancer. Second, smoking history was not common 
among the female patients, who comprised most cases; 
therefore, a larger sample size is required to assess the 
association between smoking and CAC counts or other 
indicators. Third, the sample size of this study was rela-
tively small. Although the main statistical analysis yielded 
positive results, more studies with larger sample sizes are 
still needed to further confirm the practicability of our 
findings. Fourth, there is still scope to improve the diag-
nostic accuracy of PNAIDS, more data will be included 
in the future to train the PNAIDS model and construct a 
predictive model with higher accuracy. It is noteworthy 
that detection results of CACs can be obtained within 5 
working days, quickly providing a more reliable auxiliary 
diagnostic basis when combined with PNAIDS, with a 
wide range of clinical application prospects. Our results 
indicate that this diagnostic model is promising for lung 
nodule diagnosis; with more data support in the future, it 
may be able to be extended worldwide.

Conclusions
In conclusion, this work suggests that CACs, as a novel 
lung cancer biomarker from liquid biopsy, show higher 
diagnostic value than traditional tumour markers in early-
stage lung cancer and a supportive value for CT scans in 
the diagnosis of cancer based on small lung nodules. The 
results of this study pave the way for further applications 
of CACs and offer a potential new mode for screening 
early-stage lung cancer using small lung nodules.
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